

HYDROGRAPH

RGA-COOH-1 Reactive Graphene Aggregate Carboxylic Acid Type Technical Datasheet

Hydrograph Clean Power Inc.
809 Levee Drive Suite H
Manhattan Kansas 66502
+1 785-380-4205

Product: Reactive Graphene Aggregate Carboxylic Acid Type
Product Description

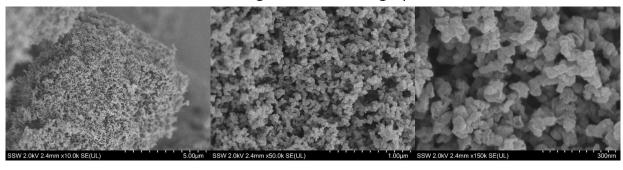
A few layer, functionalized, turbostratic graphene in a powdered form of aggregated nanoplatelets from carbon-rich gas explosion synthesis

Product Information		
Production Method	Controlled Oxidation in Batch Reactor	
Raw Material	Fractal Graphene Aggregate	
Forms of Materials	PWD – Dry Powder	

Characteristic	Test Method	Value
SP2 Bonded Carbon	RAMAN, XPS	Yes (G peak),
		100% sp2 (D parameter)
Structural Defects	RAMAN	D/G = 0.66
		G width = 39 cm ⁻¹
Number of Layers	X-Ray Diffraction	6-layer average
Z-Axis Dimensions	X-Ray Diffraction	3 <u>±</u> 0.5nm
Primary Particle Shape	TEM, Light Scattering	Platelets (aggregated)
Lateral Dimensions	TEM	20-50nm
Aspect Ratio	TEM	1:15
Tapped Bulk Density		200-270 mg/mL*
Chemical/Elemental Analysis	XPS	C 96.3%
Oxygen Content %	XPS	2.1%
Impurities %	XPS	1.6%
Functionalization	FTIR	-COOH
Surface Particle Charge	Zeta Potential	-25mV
Graphene Orientation	RAMAN, XRD	Turbostratic
Specific Surface Area (SSA)	BET	130-180 m ² /g
Crystallinity	Electron Diffraction, X-Ray Diffraction	Crystalline

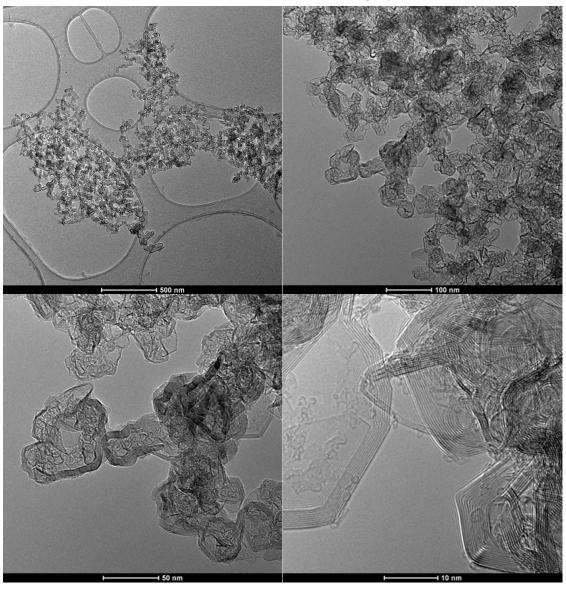
^{*}Density may vary

Product Number: RGA-COOH-1


F-28 20250911 Version 4

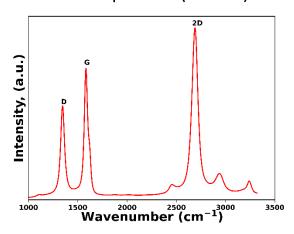
HYDROGRAPH

Parameters		
Appearance	Black powder	
Number of Layers	3-9 layers	
Lateral Size	Nano-platelets 20 to 50nm. Aggregates radius of gyration ~150nm	
Shape and Form	Fractal aggregate of nano-platelets	
Elemental Analysis	Atomic %: 96.3% Carbon, 2.1% Oxygen, 1.6% Hydrogen, No PAHs	
Dispersants/Surfactants	None	
Concentration	100%	
Solid Content	100%	
Solvent content	N/A	
Substrate Material	N/A	
Sheet Resistance	Not applicable	
Color	Light absorbing. Black L*=3.5, a*=-0.06, b*=-0.68	
	(10 ^o observer/D65 Illuminant)	
Odor	None	
Solubility in Water	Hydrophilic	
Electrical Conductivity	Function of powder compression. 100-250 S/m	
	Thermo-gravimetric analysis (TGA) shows:	
Thermal Stability	In nitrogen- No volatiles up to 600°C	
	In air- Stable up to 439°C, Tmax=638.3°C (at dT/dt=10°C/min)	

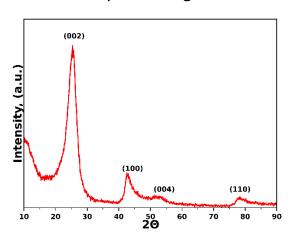

Scanning Electron Micrographs

F-28 20250911 Version 4 2

Transmission Electron Micrographs



F-28 20250911 Version 4 3



HYDROGRAPH

Raman Spectrum (532 nm)

X-Ray Diffractogram

Notes on Analysis:

- The turbostratic nature is indicated by the asymmetric (100) peak in the X-Ray Diffractogram and the symmetric Lorentzian 2D peak in the Raman Spectrum.
- AFM- The aggregate nature of our fractal graphene is not amenable to AFM analysis.
- Raman- The nanoscale lateral dimensions of our monomer platelets lead to a high fraction of defect edge sites which enhance the intensity of the Raman D bands.

Disclaimer: The technical information and other statements contained in this document are based upon tests Hydrograph believes are reliable, but the accuracy or completeness of such information is not guaranteed. Given the variety of factors that can affect the use and performance of this product, user is solely responsible for evaluating the Hydrograph product and determining whether it is fit for a particular purpose and suitable for user's method of application.

F-28 20250911 Version 4 4